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A software is described enabling kinetic analysis under non-isothermal or isothermal con- 
ditions from DSC, or from TG data. The program offers thirteen methods of kinetic analysis for 
DSC, three for isothermal analysis and two for TG, with eight different functions for the choice 
of the proper mechanism for each of them. 
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Introduction 

In view of the numerous limitations seen in the computer system used at the 
time of our first experiment on solid-solid transitions, and more especially of 
solid-plastic transitions [1], our study was principally centred on the kinetic char- 
acterization of those transitions, with the help of Freeman-Carroll, Kissinger and 
Ozawa's methods. This study allows the conception and the restatement of a com- 
putation system, much more complete, better applied to the characterization of 
the phenomena taking place at the solid state, and, more generally, able to permit 
the study of a great number of physico-chemical processes. Thanks to a particular 
interfacing system, it is possible to convey acquisition data obtained with the HP 
86 calculator of our differential scanning calorimeter, to treat them on a 386 AT 
microcomputer. The superiority of this system is that it offers no limitation, is 
able to deal with the totality of recorded points, makes it possible to extend cal- 
culations up to the quantity of the kinetic model required for the study of the 
phenomenon, and, through the interfacing system's flexibility, is able to treat, 
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with the same kinetic equations, data sprung from a differential scanning analysis 
or from an isothermal analysis, as well as thermodynamic data, from three sub- 
programs (KIN, KINISO and TGA). The integration limits of the thermograms 
which can be kept when determined, all the kinetic calculations are relating to the 
same value of the transition enthalpy (AHTr), this allows the comparisons between 
the different methods. The software which permits to plot the Arrhenius lines (for 
each kinetic exponent value) makes easier the selection of the interval which 
gives a linearization of the Arrhenius equation. The preceding study in solid-plas- 
tic transition [1] showed that the kinetic homogeneous law, applied to Freeman- 
Carroll's method, is not able to describe the phenomenon in its totality, and does 
not seem to permit an accurate modelisation of solid-plastic transitions. K. 
Kretzchmar [2] observed a similar behaviour at the time of an epoxy resin study, 
in which it was established that the kinetic homogeneous law, applied to 
Ellerstein's method, expresses only 40% of the phenomenon studied. Numerous 
authors [3-7] agree in thinking that it is often indispensable to compare results 
obtained in differential scanning analysis with results obtained in a different way 
to be able to decide between several reaction mechanisms. Thus, many [3-6] as- 
sert that it is necessary to carry out measurements by an isothermal method, to 
avoid some mistakes which could be committed during a kinetic study obtained 
only an-isothermally. Yang and Lee [7] propose comparison between a kinetic 
study obtained only an-isothermally. Yang and Lee [7] propose a comparison be- 
tween a kinetic analysis obtained for DSC and one for FTIR, which appears to be 
more specific for studying the formation of some particular bonds. 

Anisothermal kinetic program (KIN) 

The program contains thirteen methods of kinetic treatment for differential 
scanning calorimetry (DSC) data. 

Ozawa's method (1970) [8] 

Considering the integral form of anisothermal kinetic equation: 

/coEa "x" (1) 
g(t~) = --~-V--pt ) 

Ozawa, using Doyle's approximation [9]: 

log p(x) = -2.315 - 0.4567 x (2) 

obtains the equation: 
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e~ ~ a  (3) 
log V = -2.315 - 0.456 7 ~ -  log g(oq,) + log R 

Kissinger' s method (1957) [10] 

Kissinger uses the following approximation for p(x): 

- x  

p(x) = e (4) 
2 

X 

ko RT~ e_Ea/iCTp (5) 
g(o~)- VEa 

log (v / T I) = - "~- + log - log g (~,) (6) 

Kissinger's method imply that the maximum of the scanning rate suits the 
maximum of the DSC peak [111. These two methods can be applied only if g (~)  
is a constant, i.e. if ~ is a constant for different scanning rates. In Eqs (3) and (6), 
one notes the presence of expressions log (k~EdR) and log (k~R/Ea) respectively, 
which implied that the transformation to be studied is governed by only one 
mechanism. This necessitates a restriction in the application of these methods, 
which, although they do not require knowledge of the reaction mechanism, there- 
fore both imply that this last is the same for the whole process and is not depend- 
ent on the scanning rate. The computations showed [12] that we can estimate that 
the error is lower than 2% with Kissinger's method, and lower than 0.4% with 
Ozawa's. For each thermogram treated, the KIN program gives the peak tempera- 
ture (Tp) and also that of ap, to ensure that the model can be used. 

Heat evolution methods 

Differential methods 

The differential methods are supported by the expression: 

dot 
d t -  k (T) .f(ot) �9 r (7) 

There are still doubts about the possibility of separating this expression into 
two terms, the first solely dependent on the temperature, and the second on the 
transformed fraction, in the expression of the rate of reaction of materials in the 
solid state. In order to obtain the kinetic equation of the process, the function 
*(ot, T) is assumed to be equal to unity, so that the reaction rate is a unique func- 
tion of conversion [13]: 
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d~ 
- k ( ~ . f ( ~ )  (8) & 

The temperature dependence of the formal rate constant is assumed to obey an 
Arrhenius-type law: 

k(Z ) = ko,lrm.e -Ea/RT (9) 

Although the program permits computations for different m values with the 
ABS method (see below), the exponent m is generally assumed to be zero so that: 

k(T) = ko-e -Ea/RT (10) 

Malek's method (1989) [141 

This method requires the previous determination of activation energy, ob- 
tained by Kissinger's method. From E~ value, we can plot a standardized curve: 
y(ct), whose aspect will depend on the mechanism involved. Thus, even if it seems 
impossible to find a general kinetic model for all processes occurring in the solid 
state [14], the method proposed by Malek permits a choice, among the three most 
used models, of the one we must retain, depending on the y(~) function's shape 
and on the value of oq,. The three models quoted are: 

Reaction order (RO) model [151 

f ( a ) =  (1-o0" (11) 

where n is obtained according to Gorbatchev [16] by iteration of the equation: 

[ 2nRTp + Ea ]1/.-1 (12) 
ap = 1 - l n E a  + 2nRTp 

Johnson-Mehl-Avrami (JMA) model [17-18] 

f(tx) = n (1-0t) [-log (1 -ct)] 1-1/n (13) 

where n is calculated from the maximal abscissa (aM) of the normalized function 
y(~). 

I 1 1 (14) n = I + log (1 - o~ M) 
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~estak-Berggren (SB) [19] 

f(a) = a m (1 - a)" 

which ~estak, ~atava and Wendlandt [21] showed to be 

_ = ( 1 - a ) [ - l o g ( l - a ) ]  p with p=m/n 

and 

(15) 

(16) 

p = a M / (1 - a ra), n being the slope of the plot of 

logl--~exp(EJRT)~s, log[aP (1 - a)] 
(17) 

We can determine log ko introducing f (o~)'s expression for each model [14]. 
The program offers the possibility of introducing the activation energy value, 
determined from several isothermal treatments at different temperatures (see fur- 
ther), and so, as with the Kissinger's method, without knowing the reaction 
mechanism. After calculating the kinetic parameter, by means of the appropriate 
model, it is possible to compute the activation energy relating to this model by 
plotting the corresponding Arrhenius straight line, and afterwards to recompute 
those parameters in the shape of an iterative calculation stopped when the desired 
convergence criterion is obtained. 

Convergence = [Ea (i) - E. ( / -  1)] / E, (/) (18) 

This way of proceeding, not present in the initial method of Malek, gives a 
much more precise modelisation of the calculated curve. 

The following BD, SB, JMA (see below) differential methods are supported 
by the usually admitted kinetic law: 

da (8)  
dt - k (T)-f (t~) 

H w i  - w 
a = -:-- for DSC and a = 

R t  Wi --  Wf 
for TG data so: 

(19) 

for DSC data: 

dH 1 
- ko e - E a l g T ' f ( a )  

dt Qt 

log -~- - logf(o0 = log ko- ~- ~ 

(20) 

(21) 
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Borchardt-Daniel's (BD) method (1957) [20] 

W h e r e f  (ix) = (l-ix) n is introduced in the Eq. (21), the reaction order is chosen 
which provides the best correlation coefficient for the Arrhenius plot. 

~estak-Berggren's (SB) method (1971) [19] 

Where 

f (~) = ~m(1-(X)n[-Iog (l-ix)] p (22) 

For each parameter incremented the computation program tries all other values 
before going up to the superior increment. This can require considerable com- 
putation times. Meanwhile, in most cases, as shown by ~e~tak [21], an iteration 
on m and n only is enough. 

Johnson-Mehl-Avrami' s method (1939) [17-18, 211 

W h e r e f  (ix) = n(1-a) [ - log  (1-or)] l-l/n, in which an iteration is executed on n 
(13). 

The last three methods which return to the equation of models used in Malek's 
method, will permit comparisons between results obtained through two different 
approaches. 

Achar, Brindley and Sharp's (ABS) method (1966) [12, 22] 

For which we can choose among eight different terms f o r f  (a): 
A : f (o0  = (1-or)  n (11)  

B : f ( a )  = n ( l - - ~ ) [ - l o g  ( l - - a ) ]  1-]/n (13 )  

C : f (ct) = a n (23) 

O : f (ot) = 0t -1 (24) 

E : f (a) = [-log (1-ct)] -I (25) 

F : f (a) = 3/2[(1--~)1/3-1] -1 (26) 
G : f(o0 = 3[(1-r (27) 

H : f(~t) = exp(l-ct) (28) 

we can retrieve in A and B, Borchardt-Daniels and Johnson-Mehl-Avrami's 
methods. The number o f f ( a )  functions Can be easily extended according to 
needs. The interest of this method lies in the numerous functions we can employ. 
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SBIRRAZZUOLI et al.: DIFFERENT KINETIC EQUATIONS 1515 

Freeman-Carroll's (FC) method (1958) [23] 

The method has been modified in regard to the commercial software. It relies 
on the Arrhenius plot of the Eq. (29) which permits determination of E~ and n: 

log (dH/dt  )i+ 1-  log (dH/dt)i  E(__] ( T i - T i + l )  

log (&Hi + 1) - log (&Hi) = n - [ R )  (29) [log (&Hi + x) - log (AHi)] (Ti.Ti + 1) 

Log/co is determined from the Eq. (21) for which f(tz)=f (1-o0 n. The method 
available in the commercial software operates on a very different way: 

- First, it is limited to the case where n = 1. 
- It consists of seeking manually the interval of ot for which n will be equal to 

unity, n is computed in the shape of differences between following points, while 
E~ and log ko values are obtained from the preceding Eq. (21). It is, in fact, a mat- 
ter of a BD method for which we state n=l. On the other hand, this way of 
proceeding unavoidably leads to some errors, which were brought to light at the 
time of the comparison between the calculated and the experimental curves with 
the aim of the Least Squares Method (LSM). Although the correlation coeffi- 
cients obtained are often very good, in the commercial program these last relate 
to the calculation of E~ from Eq. (21) which is not the equation of a difference- 
differential method. The KIN program gives the correlation coefficient relating to 
the calculation effected in Eq. (29), called R, at the same time as that correspond- 
ing to Eq. (21), called RR for comparison. These equations have been employed 
to determine the kinetic parameters E~ and n from thermogravimetric curves with 
success, not only for the degradation of polymers, but also for simple inorganic 
decomposition reactions. However, at the same time they have been subjected to 
much criticism [21, 24-25]. Considering an approximately constant experimental 
scatter, the determination both at low and high conversions will be quite er- 
roneous. Flynn and Wall [26] pointed out that the difference-differential method 
gives only a procedural n and E~, particularly where an additional competitive or 
independent reaction takes place, and treatment of each linear-like range inde- 
pendently does little to improve results. 

Ellerstein's method (1968) [2 7] 

This method relies on the equation: 

r2(d:H/dr2)ii ea r?(dH/d73~ (30) 
( d H  / dT) i  - ~ - n R (AHi) 

We can note that for this method, the slope of the Arrhenius straight will give 
n, so we will here obtain a more accurate value for n than for that of Ea. 
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Compound mechanisms 

There is a possibility presented by the software in view of differentiating 
several intervals from Arrhenius straight lines, and afterwards, determining 
kinetic parameters in the chosen intervals, with the help of the suitable f(ct) 
model. The thermoanalytical curve is then plotted again; it is composed of the 
same number of parts as of the selected intervals. The computation of the stand- 
ard deviation through the Least Squares Method (LSM) is realised relatively to 
each recalculated curve part, or globally. 

Integral methods [12, 21] 

In these methods, the difficulty consists of determining g(ct), using a linear 
temperature programmation. 

Ot 

(C( f d t x  (31) 

T 
g (Ix) = ~ko e -E~/Rr. d_T_T 

V 
To 

(32) 

T 
ko g (Ix) = --Q- ~ e -E,/RT. dT 

To 

(33) 

Considering the term 

(Eq. 33) becomes: 

T o  

~ e -E, / m,.d T as 
o 

negligible, the preceding integral 

x 
g Ox ) koEa ~ e -x 

- -  RV --~-dx 
(34) 

o o  

. -  koE~ ~e_~c ~ 
g t a )  = - k - - v  �9 a x  

X 

(35) 

g (~)=..-~-.p ( ,  (1) 

Although Eq. (1) cannot be expressed in a closed form, there exist several 
series for its approximation [21]: 

(1) For x>15, according to SchlOmilch 
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. .  exp (-x) 1 1 
P tX)=x(x+ 1) [1 - x--~ + (x+ 2(x+ 3) "'" 

where An is a specific constant. 
(2) For 9<x<174: 

(2). 

(-1) nan ] (36) 
+ (x + 2)...(x + n) 

P(x)=exp(-x) t 674.567+ 57.412x-6.055x2-x 3 ] 
x 1699.066+841.655x+49.313x2_8.02x3_x 4 

(37) 

(3) Or, for 20 <x <60, according to Doyle, the value for log p(x), given by Eq. 

Coats-Redfern' s method (CR) (1964) [28] 

This method uses the expression (38) for the integral of the second member: 

R ~  2RT (38) Ea (1 ----~-) e ~,/Rr that gives : 

~g__~] [_~R 2RT.] E. (39) 
1o =log ~-~ (I - - ~ - ) J -  ~-~ 

Although this method is present in the software by right of comparisons, it is 
to be used cautiously, because it implies that the first term of the second member 
of Eq. (39) (containing T) is considered as constant, whence necessity to work on 
a reduced temperature interval. Some authors [21] specify that a plot of 

v . ."I 

log[ T&~2 ] vs. (l/T)should only give a straight line for (x not exceeding 0.1. 

,qatava's method (1971 ) [29] 

Using Doyle's approximation [9], ~atava obtained the following equation: 

.koE~, log g(o0 = -0.4567(R~) -2.315 + log (--~-) (40) 

we can note that Eq. (40), like,the preceding Eq. (39), implies that Ea is constant 
in the interval studied. 

Zsak6's method (1968) [301 

The logarithmic form of Eq. (1) gives: 

J. Thermal Anal., 38,1992 
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koEa 
log - ~ -  = log g (Ct) - log p(x) = B (41) 

where B depends only upon the nature of the compound studied and upon the 
scanning rate, but not upon temperature. The constancy of the difference 
log g (o0-1ogp(x) enables suggestion of a quantitative method of testing the 
validity of different kinetic equations of the same type and of determining the ac- 
tivation energy that can be estimated by finding the Ea value which ensure the 
maximum constancy of B. On the other hand, Zsak6 [31] suggested that log p(x) 
may, to the first approximation, be a linear function of reciprocal absolute 
temperature. Mac Callum and Tanner [32] and ~atava [29] assumed further that, if 
the difference between functions of log g (r and log p(x) does not depend upon 
temperature, and if log p(x) is a linear function of 1/T, then log g (ix) must also be 
a linear function of 1/T. A plot of log g (tx) vs. (I/T) computed from the ex- 
perimentally obtained data, r and 7", becomes linear for such a g (r function 
which corresponds to the most probable rate-controlling process. This is true, as 
shown by ~e~tak [33], for a temperature interval of process duration not exceed- 
ing 100~ However, in the KIN program, Zsak6's method is not used to deter- 
mine kinetic parameters (which can be obtained through another integral method, 
such ~atava's) but offers the possibility of selecting the proper reaction order and 
the proper mechanism in regard to the constancy of B. It is possible to choose be- 
tween two types of approximation for p(x): 

e x 16 
with d= (42) 

p (x)- (x+2) (x-d) x2-4x+ 84 

or the p(x) approximation given by Eq. (37). Bearing in mind the approximations 
the integrals methods proceed from. 

Bearing in mind approximations the integrals methods proceed from. 
They offer much more interest when we directly treat with r and t or ot and T 

couples as in isothermal mode or in thermogravimetry. 

Problems linked with the choice of the scanning rate 

Low heating rates 

These generally allow the obtaining of a better base line, at the same time as a 
better measure of temperatures; meanwhile they widen and flatten the DSC peaks 
[12]. On the other hand, considering the opposite processes as obeying the same 
rate-controlling process, we must consider [21]: 

d~176 rev'f(tx)=kfor'f(tx)[1-exp A(~T] ] (43) 
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Thus, the proper choice of a sufficiently high heating rate is essential for 
kinetic data computations, because at low heating rates the process is completed 
in the vicinity of the equilibrium temperature. Kinetic data calculated under such 
conditions are erroneous and Ea value is larger. 

High heating rates 

These give a better profile of DSC peaks, but create a removal effect of 
temperatures towards higher values, and reduce the base line stability. It should 
be remembered that in this manner some peaks can be hidden [12]. 

Choice of the mechanism selection criterion 

There is a disagreement among authors with regard to the choice of this stand- 
ard. Some of them [28-39] propose to retain the correlation coefficient as the 
criterion selection of reaction mechanism, others to compare the ratio of the 
standard deviations of the regression coefficient to its actual value [36]. Criado 
and Morales [6] have evoked the problem.of the relative significance we can ac- 
cord to the correlation coefficient, depending on the number of points treated, and 
this could transmit some mistakes in interpretation. 

One finds from the literature [36-40] that the correlation coefficient is not a 
good index for selecting the proper mechanism, and we must keep in mind that 
application of statistical criteria is only possible with the assumption that data 
have a 'normal distribution'. Since the aim of the calculations is to determine 
parameters that describe experimental data relatively well, the conformity of Yex- 
perimental and Ycomputed (or o~xp and o~a1r is often used as a criterion for 
selecting the proper f ( a )  or g(a) function [5, 42, 43]. The standard kinetic 
evaluation method is the Least Squares Method [14]. 

Rozycki [5] proposed the calculation of R: 

I I  

R = 1 ~ (tr~,lr ~v,i)2 (44) 
n 

/=1 

where n is the number of experimental a values, t~xp,i the degree of conversion 
for a given temperature and O~alc,ithe a value calculated. 

The function with the minimum R value is selected as the one that best 
describes the experimental data. In our case the parameter calculated (called 
LSM) is obtained as mentioned by Rozycki [5] and used in addition to the correla- 
tion coefficient. The program presents the possibility of computing the kinetic 
parameters and/or treating several reaction mechanism, in an independent way, 
consisting in an isothermal treatment using again equations established in KIN, 
whose description follows. 
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Isothermal kinetic program KINISO 

Ser ies  couple  t reatment  (o~, t) 

Integral methods 

Isothermally we have the Eq. (31) previously established [12]: 

t 

g ((~) = k (T).J dt 
O 

(45) 

g ((x) = ko.e-e'/Rr.t 

log g (ct) - log t = log ko - - -  
Ea 

RTiso 

(46) 

(47) 

If we consider a time interval t, for which Ea is a constant (only one reaction 
mechanism), log g(r - log t will also be a constant for a given temperature Tiso. 
The program computes log g(~) - log t -- B for each couple, (r t) then ap- 
preciates the variancy: 

V A R  = [ ( , ~  B 2 - n B 2) / n ]  1 / 2 (48) 

For a given mechanism, the reaction order selected is the one giving the 
lowest VAR value. Afterwards, we keep the mechanism giving the VAR minimal 
value. The different functions g({x) used are the same as the ones used in the in- 
tegrals'methods of KIN: 

A : g(c0 = l - ( l - c t )  n (49) 

a : g(o 0 = (l_(x) -1 (50) 

B : g(c~) = I-log (l-c0] l/n (51) 
C : g(~)=~n (52) 

O : g(~t) = ~2 (53) 

E : g(r162 = ( 1 - a ) [ l o g  ( l - a ) ]  + ct (54) 

F : g ( a )  = (1-2/3o~) - ( l - c t )  2/3 (55) 

G : g(o~) = [1-(1-ct)1/3] 1/2 (56) 

H : g(ot) = e x p [ - ( 1 - c 0 l  (57) 

Differential methods 

From the Eq. (8) we obtain, for an isothermal temperature Tiso: 

J. Thermal Anal., 38,1992 
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(~t) ea (58) log - logf (a) = log ko - RTiso 

The way of proceeding is the same as that described previously for integral 
methods. The functions f ( a )  used suit the ones we find in Achar-Brindley- 
Sharp's (ABS) method. 

Eo calculat ion  in an i so thermal  way  

From the Eq. (47) previously set, we note the tc times for which we have a 
progress of reaction ar (always chosen identical), so we will have g(~)=constant. 

Ea 
log tr = log g(ae)-log ko + - -  (59) 

RT~so 

Log g(~)-log/Co will be a constant for each isothermal measurement at a 
determined ~ .  A plot of log tc vs. 1/Tiso will give the Ea value [12]. It is essential 
to note that this does not require knowledge of the reaction mechanism to deter- 
mine Ea (only to determine log ko). The realisation of an isothermal measurement 
is supported by the hypothesis that the transformation of the material, during the 
time necessary to obtain the constant temperature, is negligible. 

Kinetic program for thermogravimetric measurements: TGA 

The TGA program will not be described here, previous kinetic equations of 
KIN, can be used in other studies, in order to add further results to those of the 
two previous techniques. Recent attempts were concerned with the goal of inter- 
preting the complex reaction via parallel TG and DSC results [44-45]. Agrawal 
[45] has discussed some results of DSC and TG analysis, especially for the situa- 
tion where different kinetic parameters can be obtained, stipulating if a reaction 
occurs with a change both in weight and in the heat of reaction, the kinetic 
parameters derived from TG and DSC under the same experimental conditions 
should be identical. The compounds studied in our laboratory showing an impor- 
tant vapor pressure, a thermogravimetric study could be considered as for the 
pentaerythritol [46], in view of establishing the temperature and the kinetics of 
sublimation of these compounds. 

Conclusions 

This kinetic software, elaborated from a wide bibliography and additional in- 
formation, allows the study of a great number of physico-chemical processes. 
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This makes possible a comparison between results obtained through different 
techniques. For each data-recording technique, it is possible to choose amongst 
several kinetic processing methods, in order to obtain the best phenomenon char- 
acterization. For each method, several functions can be chosen, according to the 
reaction mechanism involved. Different approaches to this problem are possible 
with the help of different methods of procedure. This allows some cross-check- 
ings between the results obtained to be established. Finally, the availability limits 
of each method are turned out in regard to the assumptions first stated, at the same 
time as some introduced approximations and some remarks concerning numerous 
authors' experiments. The experimental results obtained during this study will 
constitute the subject of a particular part, in which we will treat and develop their 
particularities and their important significations. The purpose will be to extend 
this software with the aim of being able to treat any recording of the temperature 
variation dependent on the time, and establishing comparisons between the 
results provided from different techniques. 

List of symbols 

Ea 

~(T) 

ko 

R 

V 

T 

rp 

O~p 

O~M 

m, n, p : 

y (a)  : 

da/dt  : 

dHldt : 

Hi 

Qt 

AHi 

activation energy ( kJ. mo1-1) 

specific rate cons tan t  (S -1) 

pre-exponential factor (s -1) 

universal gas constant (8.314 kl.  mol-1. K -1 

scanning rate (K.s-1) 

absolute temperature (K) 

top of peak temperature (K) 

degree of conversion 

degree of conversion to the top 
of the peak 

degree of conversion corresponding to 
the maximum of the peak function y0x) 

kinetic exponents 

standardized curve (see [14]) 

reaction rate (s -1) 

heat flow (and also Y) (mW) 

partial enthalpy at the temperature Ti (J/g) 

total enthalpy (l/g) 

a t -Hi  (J/g) 
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kfor : constant rate of the forward reaction (s -~) 

krev : constant rate of the reverse reaction (s -t) 

AG : Gibbs free energy (I/g) 

t : time (s) 

Tiso : isothermal temperature (K) 

x : E J R T  

w : weight loss (mg) 

wi : initial weight (mg) 

wf : final weight (rag) 
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Zusammenfassung~Cu(II)-komplexe von Aeenaphthoquinonmono-(4-methyl-quinolinyl)- 
hydrazon (AMH) der allgemeinen Zusammensetzung [CuLX2] (mit L = AMH; X = C1, Br, I, 
OAe oder NO3) -ausgenommen die Sulfato-komplexe, die fiber die allgemeine Zusammenset- 
zung [CuLSO4]2 verfiigen - wurden hergestellt und mittels Elementaranalyse, Messungen des 
magnetischen Momentes, Leitf~ihigkeitsmessungen, IR, elektronen- und EPR-spektroskopi- 
schen Techniken und dutch Thermoanalyse untersueht. FUr alle Komplexe wurde eine planare 
Geometrie gefunden. Die TG-Kurven zeigen, dab die Komplexe in einem Sehritt zersetzt wet- 
den, wobei am Ende dieses Schrittes Cn20 gebildet wird. 
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